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Abstract

Laminar and turbulent mass transfer in a parallel plate reactor at high Schmidt number obtained from numerical
simulation is compared with literature data. In a first step, the fluid flow is determined numerically in the reactor by
solving the Navier–Stokes equations. For turbulent flow, a low Reynolds number k––x model is used to calculate
the turbulent viscosity. Using the obtained flow field and turbulent viscosity, the current density distribution is
calculated for different flow velocities by solving the equations describing the transport of multiple ions due to
diffusion, convection and migration. For the laminar case, a very good agreement with literature data is obtained.
For turbulent flow, different numerical models for turbulent mass transfer are proposed in the literature. A detailed
study of the behaviour close to the wall of these different turbulence models is presented, together with a
comparison of the calculated results with literature correlations. This allows identification of the benefits and
disadvantages of each of the turbulence models for the numerical calculation of mass transfer at high Schmidt
numbers in a parallel plate reactor.

List of symbols

C;Cl concentration, concentration of ion l
(mol m�3)

Cbulk;Cl;bulk bulk concentration, bulk concentration of
ion l (mol m�3)

d half height of the channel (m)
dh hydraulic diameter, equal to 4 d (m)
Dmol;Dl;mol molecular diffusion coefficient, molecular

diffusion coefficient of ion l (m2 s�1)
Dt;Dl;t turbulent diffusion, turbulent diffusion of

ion l (m2 s�1)
E0 equilibrium potential (V)
F Faraday constant (96 487 C mol�1)
i; j summation indices
J current density (A m�2)
k turbulent kinetic energy per unit mass

(m2 s�2)
km mass transfer coefficient ðm s�1)
L length of the electrode (m)
n number of electrons involved in a reaction
~nn normal (m)
Nil; ~NNl (components of) mass transfer flux of ion l

(mol m�2 s�1)

p static pressure (Pa)
R universal gas constant (8.3143 J mol�1 K�1)
Rl production rate of ion l (mol m�3s�1)
Re Reynolds number
Ret turbulent Reynolds number
S surface of the electrode (m2)
Sc Schmidt number
Sct turbulent Schmidt number
Sh Sherwood number
t time (s)
Sij strain rate (s�1)
tij viscous stresses (kg m�1s�2)
T absolute temperature (K)
u0i fluctuating velocity components (ms�1)
ul mobility of ion l (m2 mol J�1s�1)
us friction velocity (m s�1)
Ui components of velocity vector~vv (m s�1)
xi space coordinates (m)
zl charge of ion l

Greek symbols
dij chronecker delta
g overpotential (V)
l dynamic viscosity (kg m�1s�1)
m kinematic viscosity (m2s�1Þ
mt turbulent viscosity (m2s�1)
q density of the electrolyte (kg m�3)
sij Reynolds stresses (kg m�1s�2)

q This paper was originally presented at the 6th European

Symposium on Electrochemical Engineering, Düsseldorf, Germany,

September 2002.
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swall surface shear stress (kg m�1s�2)
U electrical potential of electrolyte (V)
Um electrical potential of electrode (V)
x specific dissipation rate (s�1)
Xij mean rotation tensor (s�1)

1. Introduction

One of the most important factors in the operation of
plating reactors is the local mass transfer, which is
mainly determined by the electrolyte flow in the reactor.
To optimize a plating reactor, an accurate prediction of
the local mass transfer and thus the fluid flow is needed.
This paper presents a numerical model to calculate the
laminar and turbulent fluid flow and mass transfer in
arbitrary shaped reactors.
Because both the flow and the mass transfer are well

defined and documented, the parallel plate geometry is a
very suitable test case for a turbulent flow solver and
turbulent mass transfer calculations. Therefore, in order
to estimate the validity and accuracy of turbulent mass
transfer calculations, different models are used to
calculate the turbulent mass transfer in a parallel plate
reactor. These calculations are compared with a corre-
lation obtained from measurements [1, 2].
A k—x model is used to calculate the turbulent

viscosity in order to solve the Reynolds averaged
Navier–Stokes equations describing the turbulent fluid
flow. The low Reynolds version of the k—x model,
which includes this ‘combination’ of k—x and k—�
approaches, presented in the work of Wilcox [3] has
been implemented. To evaluate the performance of this
model, the calculations of the flow and turbulence
parameters for a channel are compared with ‘direct
numerical simulation’ (DNS) [4, 5].
Steady-state numerical computations for the non-

simplified multi-ion transport model, including diffu-
sion, migration, convection and chemical and electrode
reactions, have been presented by several authors. For
example, Georgiadou and Alkire presented results in a
complex geometry and flow field, based on the ‘finite
difference method’ (FDM) in combination with an
upwind scheme for the convection [6, 7]. Also Volgin
and Davidov [8, 9] have performed multi-ion calcula-
tions using the finite difference method. Most of the
presented examples are rather theoretical, but some
interesting comments on the stability and solution speed
of the multi-ion equations are made. A method based on
the ‘finite volume method’ (FVM) was presented by
Bortels [10] and Van den Bossche [11]. This approach
was the basis for the work presented in this paper. The
results presented by the authors mentioned above show
the possibilities of the multi-ion transport and reaction
model to predict current density, potential and concen-
tration distributions in artificially shaped electrochemi-
cal reactors. However, all these calculations are limited
to laminar flow conditions.

Several authors [12–16] present results of mass trans-
fer in electrochemical reactors with turbulent flow. Most
of them are based on a boundary integral method to
solve for the boundary layer or only solve the convec-
tion–diffusion equation, including the turbulent diffu-
sion, for the limiting current situation. To the authors
knowledge, none of these calculation use the full multi-
ion model including the effects of turbulence on the mass
transfer. Gurniki [17] studied the use of ‘large eddy
simulations’ (LES) for predicting turbulent mass trans-
fer in a parallel plate reactor. In that work also the
turbulent fluctuations of the concentration are model-
led. However, the influence of migration on the mass
transfer is neglected and the presented approach is only
valid for binary electrolytes.

2. Turbulence model

2.1. Reynolds averaged Navier–Stokes Equations

For engineering applications, one is generally only
interested in the statistical values of the random
variations encountered in turbulence. Therefore, the
study of turbulent flow usually involves an averaging
of the equations describing the flow. This averaging
process, as explained in detail in [3], leads to the
‘Reynolds averaged Navier–Stokes’ (RANS) equations.
The equations describing the turbulent fluid flow are

the incompressible RANS equations:

@Ui

@xi
¼ 0 ð1Þ

q
@Ui

@t
þ qUj

@Ui

@xj
¼ � @p

@xi
þ @ðtji þ sjiÞ

@xj
ð2Þ

with Ui the mean velocity components, p the mean
pressure, t the time, q the density, tij the mean viscous
stresses given by

tij ¼ 2lSij ð3Þ

with l the molecular viscosity and Sij the mean strain
rate given by

Sij ¼
1

2

@Ui

@xj
þ @Uj

@xi

� �
ð4Þ

By analogy with the viscous stresses, the Boussinesq
eddy–viscosity approximation (linear model) states that
the turbulent stresses (Reynolds stresses) sij are given by

sij ¼ 2ltSij �
2

3
qkdij ð5Þ

with lt the turbulent viscosity, which in contrast to the
molecular viscosity, is not a property of the fluid but of
the flow. The variable k is the specific turbulent kinetic
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energy equal to half of the sum of the squares of the
fluctuating velocity components:

k ¼ 1

2
u0iu
0
i ð6Þ

The factor 2/3 in Equation 5 only holds for the 3D
case. In two-dimensions, this factor becomes 1.
Equations 1 and 2 are identical in form to the laminar

Navier–Stokes equations except for the additional
turbulent Reynolds stresses which appear in the stress
tensor terms.
The numerical treatment of the RANS and the

turbulence model is based on the work of Waterson
[18]. A residual distribution approach (‘multidimension-
al upwind method’, MDUM) is used.

2.2. k—x model

The equations describing the low-Reynolds version of
the Wilcox k—x model are presented is the appendix.
An important aspect of the numerical treatment of the

k—x model is the need to guarantee that the turbulence
variables (k and x) remain positive and finite at all time
during the solution process. The convective terms in
Equations 28 and 29 are discretized using MDUM. The
scalar N -scheme is used to ensure the positive definite-
ness of both k and x. The diffusive terms are treated
with the standard Galerkin finite element method.

3. Mass transfer models

3.1. Convection–diffusion model

When migration is neglected, the stationary convection–
diffusion equation including turbulent mass transfer
[19], can be written as

Ui
@C
@xi
¼ @

@xi
ðDmol þ DtÞ

@C
@xi

� �
ð7Þ

with Ui the velocity components calculated as described
above, C the concentration, Dmol the molecular diffusion
constant and Dt the turbulent diffusion. By analogy to
the linear approximation for the Reynolds stresses, the
mass transfer flux due to turbulence can be written as
�Dt@C=@xi. Similar as for the fluid flow, a model needs
to be proposed to calculate Dt.
This model describes the mass transfer in binary

electrolyte or allows a fast calculation of the limiting
current for one ion, by setting the concentration of the
reacting ion to zero at the electrode(s).
For mass transfer one can define the following

dimensionless numbers:

Sc ¼ m
Dmol

ð8Þ

the Schmidt number, equivalent to the Prandtl number
in heat transfer, describing the ratio between the
viscosity and the molecular diffusion constant, and

Sct ¼
mt
Dt

ð9Þ

the turbulent Schmidt number, equivalent to the turbu-
lent Prandtl number, describing the ratio between the
turbulent viscosity and the turbulent diffusion.
The boundary conditions are C ¼ Cbulk on the inlet(s)

and, at the limiting current, C ¼ 0 on the cathode(s). On
all the other boundaries, the natural boundary condition
@C=@~nn ¼ 0 is imposed.

3.2. Multi-ion transport and reaction model

For each species l one can state that at each point in the
solution, the change of concentration is equal to the net
input plus the local production (or reduction) due to
chemical reactions. In differential form this is described
as follows:

@Cl

@t
¼ � @

@xi
ðNilÞ þ Rl ð10Þ

with Nil the components of ~NNl the mass transfer flux.
The production per unit volume Rl involves homo-
geneous chemical reactions in the bulk of the solution,
but no electrode reactions. In this paper no homogene-
ous reactions are considered, in which case the term Rl

equals zero.
The flux of each dissolved species l (no summation

over l) due to molecular diffusion, convection, migra-
tion and turbulent diffusion is given by:

Nil ¼ �ðDl;mol þ Dl;tÞ
@Cl

@xi
þ Clui � zlulFCl

@U
@xi

ð11Þ

with Cl the molar concentration (mol m3), zl the charge,
ul the mobility (m2 mol J�1 s�1), U the electrical poten-
tial (V ), Dl;mol the diffusion coefficient (m2 s�1), Dl;t the
turbulent diffusion (m2 s�1), Ui the velocity of the
solvent (m s�1), and F the faradaic constant.
As this is a first attempt to include the effects of

turbulence on the multi-ion mass transfer the influence
of the turbulent fluctuations on the electrical potential is
neglected.
The unknowns in the mass conservation equations are

the ion concentrations and the potential in each point of
the solution. Hence an additional equation, the electro-
neutrality condition, is added to the mass conservation
equations:

XI

l¼1
zlCl ¼ 0 ð12Þ

This equation expresses that the electric conductivity is
too large for free charges to exist.
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The imposed boundary conditions are as follows:
(i) at insulators, symmetry planes and outlet

@U
@~nn
¼ 0;

@Cl

@~nn
¼ 0 ð13Þ

(ii) at inlet(s)

Cl ¼ Cl;bulk ð14Þ

(iii) at electrode(s)

~NlNl �~nn ¼ 0 ð15Þ

for non-reacting ions.
For the active ions, the flux is related to the speed of

the electrode reactions. The driving force of these
electrode reactions is the overpotential:

g ¼ Um � U� E0 ð16Þ

that is, the difference between the (imposed) potential on
the electrodes Um and the electrolyte potential U at the
other side of the double layer, with respect to the
equilibrium potential E0. In general the values of Um and
U can vary along the electrode surface, respectively due
to the ohmic voltage drop in the electrode and to the
nonuniform current density distribution. The overpo-
tential g depends on the local current density and on the
local ion concentration at the electrode surface. Often a
Butler–Volmer equation is used to describe this depen-
dency J ¼ f ðg;CkÞ. Assuming further that only one
reaction:

Anþ þ ne� �! � A # ð17Þ

takes place, the flux for ion Anþ is written as

~NNAnþ �~nn ¼ J
nF

ð18Þ

and the current density of the reaction is given by the
following Butler–Volmer expression:

J ¼ J0;aeaangF =RT � J0;cCAnþe�acngF =RT ð19Þ

In this paper, an electrochemical system with the
parameters J0;a ¼ 10 A m�2, J0;c ¼ 1 A m�2 mol�1,
aa ¼ 0:75, ac ¼ 0:25, n ¼ 2 is considered.
On the anode, an infinitely fast electrode reaction is

considered, so that the overpotential can be neglected
(primary distribution).
Combination of these electrode kinetics with the

multi-ion model gives a closed system of equations, in
which the overpotential as a driving force for the
electrode reactions is included in a straightforward way.
When the potential different between anode and cathode
is imposed, as is done in reality, the potential, concen-
tration and current density distribution in the reactor

can be calculated without any further approximations or
assumptions.

3.3. Turbulent mass transfer models

Four models for the turbulent diffusion are commonly
proposed for turbulent high Schmidt number mass
transfer calculations.
The turbulent diffusion is neglected based on the idea

that the mass transfer boundary layer is so thin that it is
fully encompassed in the viscous sublayer of the
turbulent fluid flow. There are some strong arguments
that this assumption is too simple and does not give very
good predictions for general flow cases. However, this
assumption is valid if the length of the electrode is small
(L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sWall=ðlmÞ

p
¼ Lþ < 700) as demonstrated in [16, 20].

The model Sct = constant is the straightforward
extrapolation of what is generally done in turbulent heat
transfer (see [12, 21]. A typical value used in heat
transfer is Prt ¼ 0:71.
More elaborated models consider the dependence of

Sct on global quantities of the flow (Re; Sc; . . .). This
implies that this approach is only applicable for a
limited number of standard cases (parallel plate, pipe,
. . .). Furthermore, the dependence of Sct differs from
author to author [15, 22] and generally does not take
account of any local effects of the flow on the mass
transfer. For example based on measurements of mass
transfer coefficients in circular pipe flow [23], Rosen [15]
suggests:

Sct ¼
0:0014½1� eð�0:5Re

1=2

mod
Þ�

0:001 242 Sc�0:112
ð20Þ

with Remod ¼ 0:001ðRe� 3000Þ.
Several different algebraic turbulence models for Dt

have been presented [14, 24, 25], most of them based on
one set of measurements. Most models start from the
observation, both theoretical and experimental, that the
turbulent diffusion varies with y3 close to the wall. A
typical example is the model of Aravinth [14]. He
proposes:

Dt

m
¼ 0:0007 yþ3

ð1þ 0:00405 yþ2Þ1=2
0< yþ < 30; ScP1

ð21Þ

The law of the wall suggests that Equation 21 is
universal for all turbulent boundary layers [14].
Also some attempts exist to use an explicit algebraic

turbulent stress transport model for passive scalar
variables [26, 27]. Although these models seem very
promising, they are much more complicated then the
models presented above, and give no guarantee of more
accurate results. Therefore, they are not used in this
work.
Recently, some authors [13, 28] used DNS or LES for

the turbulent flow and scalar transport in a channel to
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validate the different turbulence models described
above. They found that the turbulent Schmidt number
is close to one for yþ > 5. Close to the wall, Dt was
found to vary with yþ3. The algebraic model:

Dt

m
¼ 0:000 494 yþ3:38; Sc ¼ 2400 ð22Þ

as identified by Papavassiliou [29] from DNS calcula-
tions, coincides very well with the model of Aravinth,
especially close to the wall. Therefore only the algebraic
model governed by Equation 21 is used in the calcula-
tions.

4. Results and discussion

4.1. Turbulent flow in a parallel plate reactor

As a first test case the turbulent flow in a parallel plate
reactor (channel) is calculated and validated with
literature results. The reference results are obtained
from DNS and presented in [4, 5]. Figure 1 shows the
geometry under investigation. The half-height of the
channel, (d) is 0.005 m. The Reynolds number, based on
the average inlet velocity, the half-height of the cell and
the kinematic viscosity (10�6 m2 s�1 for water) is 3300.
The computational mesh, partly shown in Figure 2,

contains 29 770 triangles and 14 886 points. The first
element is at a normal distance of yþ ¼ 0:05 from the
wall. This figure also shows the calculated turbulent
velocity profile.

Figure 3 compares the developed velocity profile with
the reference solution. A agreement, similar to other
low-Re k—x implementations [3] is observed. For the
viscous sublayer (yþO10, which contains the turbulent
diffusion layer) the agreement is very good, for the log
layer (yþP10) the profiles differ. In Figure 4, the
dimensionless turbulent kinetic energy profile is shown.
Quite a good agreement with the reference solution is
obtained, especially close to the wall. These results are in
perfect agreement with the predictions of other imple-
mentations (e.g., [3]) of the Low Reynolds Number
k—x model and form the basis for all subsequent mass
transfer calculations.

4.2. Turbulent mass transfer in a parallel plate reactor
at high Schmidt number

To investigate the turbulent mass transfer in a parallel
plate reactor, the limiting current is calculated for
different flow rates and compared with correlations
found in literature. These correlations are measured in

Inlet Outlet

Cathode

Anode

0.1 m0.2 m

0.2 m

0.
01

 m

Fig. 1. Schematical overview of the reactor geometry.

Fig. 2. Flow field and grid in the channel reactor.
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limiting current density conditions and are presented in
dimensionless form as Sh ¼ f ðRe; ScÞ. The Sherwood
number, defined as

Sh ¼ kmd
Dmol

ð23Þ

and is related to the limiting current by

Sh ¼ Ilimd
S n F Cbulk Dmol

ð24Þ

4.2.1. Correlations
For mass transfer in laminar flow Pickett [2] proposes
the correlation

Sh ¼ 2:33
Re Sc d

L

� �1=3

ð25Þ

Other authors [30, 31] use analytical solutions or
numerical simulations to obtain the limiting current
density distribution in channel flow cells.
For turbulent mass transfer in channel cells several

correlations are proposed [1]. The most commonly used
is the Chilton–Colburn analogy:

Sh ¼ 0:023Re0:8 Sc1=3 ð26Þ

According to Pickett [2], this correlation is only valid
for an electrode of length greater than 12.5 hydraulic
diameters. Pickett suggests the following empirical
correlation for electrodes with length L smaller than
7.5 hydraulic diameters (dh) in developing mass transfer
conditions:

Sh ¼ 0:145Re2=3 Sc1=3
dh
L

� �1=4

ð27Þ

4.2.2. Calculations
When performing the calculations, different turbulent
mass transfer models yield a different distribution of the
turbulent diffusion normal to the fixed wall (electrode).
Figure 5(a) and (b) show these fully developed distribu-
tions for Sct ¼ 1 (Dt ¼ mt) and for the algebraic model
presented in Section 3.3 for a flow at Re ¼ 8333 and
Sc ¼ 1714. Figure 5(a) shows the turbulent diffusion
throughout the buffer layer (yþO50) and Figure 5(b) is a
zoom of the behaviour of the turbulent diffusion in the
mass transfer boundary layer (yþO5). From these
Figures it is clear that for this example, according to
the models used, the molecular diffusion is dominant
only for a very small zone near the wall (yþO1). This of
course means that neglecting the turbulent diffusion will
yield significantly different mass transfer rates. Both
models are independent of Sc, which means that neither
can accurately predict the mass transfer over a large
range of Sc values, unless the turbulent fluctuations of
the mass transfer are independent of Sc.
Considering long electrodes, the results of the numeri-

cal calculations and the different correlations for lam-
inar and low Reynolds number turbulent flow are shown
in Figures 6 and 7. It is clear that a very good agreement
between correlations and simulations is obtained for the
mass transfer in the laminar flow regime (Re < 1500).
From the correlations, it can be estimated that the
transition from the laminar to the turbulent regime
occurs around Re ¼ 1500 to 2000. It is however obvious
that this transition is not captured accurately by the
k—x turbulence model, a well known problem for most
RANS based turbulence models. These standard k—x
models predict transition from laminar to turbulent flow
at Reynolds numbers that are up to one order of

Fig. 3. Dimensionless velocity profile. Key: (s) DNS; (() k—x.

Fig. 4. Dimensionless turbulent kinetic energy profile. Key: (s) DNS;

(() k—x.
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magnitude too low, as explained in [3]. Some modifica-
tions of the k—x are therefore proposed by Wilcox.
Even with these modifications, the predictive quality
based turbulence models for turbulent mass transfer
remains limited for the transition from laminar to
turbulent flow.
For turbulent mass transfer, the turbulent mass

transfer model has a very large influence on the
Sherwood number as presented in Figure 7. It is clear
that the assumption Dt ¼ 0 (equivalent to Sct ¼ 1)
underestimates the turbulent mass transfer and that
Sct ¼ 1 overestimates it, when compared with the
experimental values from the Chilton–Colburn correla-

tion. The model of Rosen is much better in predicting
the turbulent mass transfer in a channel, especially at
higher Re numbers. From this it is evident that there
should exist a reasonable finite value of Sct for which, at
least in this test case, the simulation matches the
correlation perfectly. With some trial and error, this
value was found to be 4.5, for which the corresponding
results are also given in Figure 7. Finally, the algebraic
turbulent mass transfer model gives very good predic-
tions, as this model is derived from measurements for
mass transfer in pipe flow.
In the future, additional tests will be performed in

other geometries for a large range of Sc and Re numbers

Fig. 6. Sherwood number for different Reynolds numbers; laminar

and low Reynolds number turbulent flow, Sc ¼ 1714. Key: (s)

laminar correlation; (() laminar simulation; (}���}) Chilton–Col-

burn; (x� � �x) Sct ¼ 1; (þ���þ) algebraic model.

Fig. 7. Sherwood number for different Reynolds numbers; turbulent

flow, Sc ¼ 1714: Key: (�—�) Chilton–Colburn; ((���() Dt ¼ 0;

(}���}) Sct ¼ 1; (x� � �x) Sct=Rosen; (þ���þ) Sct ¼ 4:5; (4—4)

algebraic model.

Fig. 5. Turbulent diffusion normal to the wall, Re ¼ 8333, Sc ¼ 1714 (a) Turbulent diffusion profile, (b) Turbulent diffusion close to the wall.

Key: (s) SCt ¼ 1; (() algebraic model; (.) Dmol.
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in order to verify the validity and applicability of the
different turbulent mass transfer models.

4.3. Turbulent mass transfer for different Schmidt
numbers

The calculated Sherwood number as a function of the
Schmidt number for different turbulent mass transfer
models and the Chilton–Colburn correlation are shown
in Figure 8.
For these calculations the agreement between mea-

surements and calculations is also best for the algebraic
turbulent diffusion model and the Sct ¼ 4:5 model. For
the complete range of Sc, these models predicts the
correlation almost perfectly. The model presented by
Rosen, whereby the turbulent Schmidt number is related
to the Reynolds and Schmidt number, predicts the
correlation very well for high values of Sc, but is not so
accurate for low Sc values.

4.4. Turbulent mass transfer in a parallel plate reactor
with short electrodes

Taking Sc ¼ 1714, the calculations with electrode length
equal to two hydraulic diameters, show a good agree-
ment between the correlation (Equation 27) and the
numerical results as is observed in Figure 9. Further-
more, the different mass transfer turbulence models
yield the same Sherwood number within 10%. This can
be explained by the fact that as the mass transfer
boundary layer starts developing at the beginning of the
electrode, the boundary layer remains quite small for
short electrodes. From Figure 5 it is clear that as long as
the turbulent mass transfer boundary layer remains
smaller then yþO2 the molecular diffusion is dominant
and thus the resulting (turbulent) mass transfer remains

independent of the model chosen for the turbulent
diffusion. As already proposed by Son and Hanratty
[32], this leads to the conclusion that turbulent mass
transfer only plays an important role when the electrode
are sufficiently long to allow the mass transfer boundary
layer to develop until the turbulent mass transfer
becomes important.

4.5. Turbulent mass transfer for multi-ion model for long
electrodes

The turbulent diffusion is assumed to be the same for all
ions involved in the multi-ion system. In this paper, the
only turbulent diffusion model used for multi-ion
calculations is Sct ¼ 1.
Calculations of the concentration and potential dis-

tributions described by the multi-ion model are per-
formed for the (artificial) electrochemical system as
shown in Table 1. The only reaction that takes place is
the reduction of ion A as described by Equation 19.
The current density distributions along the cathode

for different fractions of the limiting current density are
shown in Figure 10. The corresponding concentration
profiles of the reacting ion at the electrode surface are
given in Figure 11. Similar results have been presented
for laminar flow by Bortels [10].

Table 1. Properties of the ions

Ion k zk Ck;bulk

mol m�3
Dk � 1010

m2 s�1

A 1 +2 10 5

B 2 )2 110 4

C 3 +1 200 10

Fig. 9. Short electrode: Sherwood number for different Reynolds

numbers; Sc ¼ 1714: Key: (�—�) Picket; (x—x) Sct ¼ 4:5; (¤)

algebraic model.

Fig. 8. Sherwood number for different Schmidt numbers; turbulent

flow, Re ¼ 8333: Key: (�—�) Chilton–Colburn; ((���() Dt ¼ 0;

(}���}) Sct ¼ 1; (x� � �x) Sct=Rosen; (þ���þ) Sct ¼ 4:5; (4—4)

algebraic model.
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As expected, the downstream part of the cathode
reaches the limiting current density regime first, because
the electrolyte becomes successively depleted along the
cathode. It is important to note that even at 75% of the
total limiting current, no part of the cathode is at
limiting current. At the leading edge of the cathode, the
edge effect (involving a very high current density) will
sharply decrease the concentration of the reacting ion.
Note also the ‘bump’ in the concentration profile for the
total current between 50% and 97% of the limiting
current, similarly as observed in [33] for laminar flow.
This is due to competition between the increase in the
concentration by diffusion of ions through the boundary
layer and decrease in concentration due to the deposi-
tion reaction. As long as the boundary layer is quite
thin, the diffusive transport will be dominant and the

concentration will rise, but at a certain point along the
cathode, the boundary layer becomes too thick and the
concentration starts decreasing. For the lower currents,
the edge effect does not create a concentration gradient
large enough to have an increase in concentration due to
diffusion. It is clear from Figure 10 that mass transfer
only plays an important role at 50% or higher of the
limiting current. Hence, it is also expected that the
turbulent mass transfer model will have a limited
influence on the calculated multi-ion mass transfer. This
will be subject of further study.

5. Conclusions

Calculations of turbulent mass transfer in a parallel
plate reactor with long and short electrodes were
performed and validated using correlations found in
literature. Different models for the turbulent diffusion
Dt were studied, showing that the algebraic model and
the model with Sct ¼ 4:5 give the best results for a
parallel plate reactor with long electrodes. Both neglect-
ing the turbulent diffusion, and extrapolating the
turbulent Schmidt number from heat transfer, give
unacceptable results, even for this very simple geometry.
From the study of a parallel plate reactor with short
electrodes it can be concluded that, if the electrode
length is short, the turbulent mass transfer can be
neglected because the turbulent diffusion remains neg-
ligible compared with the molecular diffusion through-
out the mass transfer boundary layer. It was
demonstrated that this approach to modelling turbulent
mass transfer can be extrapolated from the limiting
current case to much more general multi-ion calcula-
tions. Further research is needed to verify whether these
conclusions can be extended to other geometrical
configurations and more complex electrochemical sys-
tems.
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Appendix

A. k—x model

Wilcox [3] gives the following version of the ‘Low-
Reynolds’ k—x model. The k—x model describes the
turbulent kinetic energy k and the dissipation of
turbulent kinetic energy per volume and time unit (x)
governed by the equations:

@k
@t
þ Uj

@k
@xj
¼ sij

@Ui

@xj
� b�kxþ @

@xj
ðmþ r�mtÞ

@k
@xj

� �

ð28Þ

and

@x
@t
þ Uj

@x
@xj
¼ a

x
k
sij

@Ui

@xj
� bx2 þ @

@xj
ðmþ rmtÞ

@x
@xj

� �

ð29Þ

The closure equations are as follows:

mt ¼ a�
k
x

ð30Þ

Ret ¼
k
mx

ð31Þ

a� ¼ a�0 þ Ret=Rk

1þ Ret=Rk
ð32Þ

a ¼ 13

25
� a0 þ Ret=Rx

1þ Ret=Rx
� ða�Þ�1 ð33Þ

b� ¼ b�0 �
4=15þ ðRet=RbÞ4

1þ ðRet=RbÞ4
� fb� ð34Þ

vk ¼
1

x3

@k
@xj

@x
@xj

; vx ¼
XijXjkSki
ðb�0xÞ

3

�����
����� ð35Þ

fb� ¼ 0; vkO0 ð36aÞ

fb� ¼
1þ 680v2k
1þ 400v2k

; vkP0 ð36bÞ

fb ¼
1þ 70vx
1þ 80vx

ð37Þ

The mean rotation-rate tensor is defined by

Xij ¼
1

2

@Ui

@xj
� @Uj

@xi

� �
ð38Þ

The closure coefficients are: b�0 ¼ 9=100, b0 ¼ 9=125,
b ¼ b0fb, r� ¼ r ¼ 1=2, a�0 ¼ 1=3b0, a0 ¼ 1=9, Rb ¼ 8,
Rk ¼ 6 and Rx ¼ 2:95.

B. Boundary conditions

B.1. Inlet
At the inlet, the value of k and xmay be estimated based
on the turbulent intensity Iturb:

kinlet ¼
3

2
ðIturbvinletÞ2 ð39Þ

with vinlet the velocity normal to the inlet. The turbulent
intensity is the ratio of the fluctuating velocity over the
average velocity. The higher the turbulent intensity the
more turbulent the flow. A typical range for the
turbulent intensity is about 1 to 5%.
Determining the initial x requires some estimate of an

appropriate length scale, l, typically 5% of the length of
the inlet. From this we can the determine x at the inlet
to be:

xinlet ¼
k1=2

l
ð40Þ

The normal component of the velocity is imposed to
the average velocity at the inlet; the tangential compo-
nent is set to zero.
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B.2. Outlet
A zero normal gradient (natural boundary condition) is
assumed for the turbulent quantities at the outlet. A
reference pressure is imposed.

B.3. Walls
For a nonmoving wall, the value of k and Ui are fixed at
zero. For smooth walls, the value of x is set to be

xwall ¼
6m

bðDywallÞ2
ð41Þ

where Dywall is the normal distance from the wall node to
its nearest interior neighbour.

873


